Myosin isoforms in anuran skeletal muscle: their influence on contractile properties and in vivo muscle function.

نویسندگان

  • G J Lutz
  • R L Lieber
چکیده

Functional studies on isolated single anuran skeletal muscle cells represent classic experiments from which much of our understanding of muscle contraction mechanisms have been derived. Because of their superb mechanical stability when isolated, single anuran fibers provide a uniquely powerful model system that can be exploited to understand the relationship between myosin heavy chain (MHC) and myosin light chain (MLC) composition and muscle fiber function. In this review, we summarize historic and recent studies of MHC and MLC expression patterns in the fiber types of anuran species. We extend the traditional classification scheme, using data from recent reports in which frog MHCs have been cloned, to reveal the molecular basis of frog muscle fiber types. The influence of MHC and MLC isoforms on contractile kinetics of single intact fibers is reviewed. In addition, we discuss more subtle questions such as variability of myosin coexpression along a single cell, and its potential influence on contractile function. The frog jump is used as a model system to elucidate principles of muscular system design, including the role of MHC isoforms on in vivo muscle function. Sequence information is used from cloned frog MHCs to understand the role of specific regions of the myosin motor domain in regulating contractile function and the evolutionary origins of fast and slow amphibian MHCs. Finally, we offer promising future possibilities that combine molecular methods (such as recombinant gene transfer) with single cell contractile measurements to address questions regarding myosin structure/function and gene regulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skeletal myosin binding protein-C isoforms regulate thin filament activity in a Ca2+-dependent manner

Muscle contraction, which is initiated by Ca2+, results in precise sliding of myosin-based thick and actin-based thin filament contractile proteins. The interactions between myosin and actin are finely tuned by three isoforms of myosin binding protein-C (MyBP-C): slow-skeletal, fast-skeletal, and cardiac (ssMyBP-C, fsMyBP-C and cMyBP-C, respectively), each with distinct N-terminal regulatory re...

متن کامل

Studies of myosin isoforms in muscle cells: single cell mechanics and gene transfer.

Myosin, the motor protein in skeletal muscle, is composed of two subunits, myosin heavy chain and myosin light chain. All vertebrates express a family of myosin heavy chain and myosin light chain isoforms that together are primary determinants of force, velocity, and power in muscle fibers. Therefore, appropriate expression of myosin isoforms in skeletal muscle is critical to proper motor funct...

متن کامل

Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility.

Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast an...

متن کامل

Molecular determinants of force production in human skeletal muscle fibers: effects of myosin isoform expression and cross-sectional area.

Skeletal muscle contractile performance is governed by the properties of its constituent fibers, which are, in turn, determined by the molecular interactions of the myofilament proteins. To define the molecular determinants of contractile function in humans, we measured myofilament mechanics during maximal Ca(2+)-activated and passive isometric conditions in single muscle fibers with homogenous...

متن کامل

Fast fibres in a large animal: fibre types, contractile properties and myosin expression in pig skeletal muscles.

Little is known about the influence of Myosin Heavy Chain (MHC) isoforms on the contractile properties of single muscle fibres in large animals. We have studied MHC isoform composition and contractile properties of single muscle fibres from the pig. Masseter, diaphragm, longissimus, semitendinosus, rectractor bulbi and rectus lateralis were sampled in female pigs (aged 6 months, mass 160 kg). R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microscopy research and technique

دوره 50 6  شماره 

صفحات  -

تاریخ انتشار 2000